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Abstract 
In the virtual presence of a heavy quark t, the interactions of a CP-odd scalar 

boson A, with mass MA < 2it&, with gluons and light quarks can be described by an 
effective Lagrangian. We analytically derive the coefficient functions of the respec- 
tive physical operators to three loops in quantum chromodynamics (&CD), adopting 
the modified minimal-subtraction (MS) h SC eme of dimensional regularization. Spe- 
cial attention is paid to the proper treatment of the 75 matrix and the Levi-Civita E 
tensor in D dimensions. In the case of the effective ggA coupling, we find agreement 
with an all-order prediction based on a low-energy theorem in connection with the 
Adler-Bardeen non-renormalization theorem. This effective Lagrangian allows us to 
analytically evaluate the next-to-leading QCD correction to the A + gg partial de- 
cay width by considering massless diagrams. For MA = 100 GeV, the resulting cor- 

rection factor reads 1+(221/12)a, (5)(&fA)/“+165.9 (a$5)(M/+r)2 M 1+0.68+0.23. 
We compare this result with predictions based on various scale-optimization meth- 
ods. 
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1 Introduction 

Despite the tremendously successful consolidation of the standard model (SM) of ele- 
mentary particle physics by experimental precision tests during the past few years, the 
structure of the Higgs sector has essentially remained unexplored, so that there is still 
plenty of room for extensions. A phenomenologically interesting extension of the SM 
Higgs sector that keeps the electroweak p parameter [l] at unity in the Born approxima- 
tion, is obtained by adding a second complex isospin-doublet scalar field with opposite 
hypercharge. This leads to the two-Higgs-doublet model (2HDM). After the three mass- 
less Goldstone bosons which emerge via the electroweak symmetry breaking are eaten up 
to become the longitudinal degrees of freedom of the W* and 2 bosons, there remain 
five physical Higgs scalars: the neutral CP-even h and H bosons, the neutral CP-odd A 
boson, and the charged H*-boson pair. The Higgs sector of the minimal supersymmetric 
extension of the SM (MSSM) consists of such a 2HDM. At tree level, the MSSM Higgs 
sector has two free parameters, which are usually taken to be the mass MA of the A 
boson and the ratio tanp = vz/vi of the vacuum expectation values of the two Higgs 
doublets. For large values of tan p, the top Yukawa couplings of the neutral Higgs bosons, 
!I? = h, H, A, are suppressed compared to the bottom ones. 

The search for Higgs bosons and the study of their properties are among the prime 
objectives of the Large Hadron Collider (LHC), a proton-proton colliding-beam facility 
with centre-of-mass energy fi = 14 GeV, which is presently under construction at CERN. 
The dominant production mechanisms for the neutral Higgs bosons at the LHC will be 
gluon fusion, gg -+ @ [2], and b&Q associated production, gg, @ + bbtD [3], which is, 
however, only relevant for large tan ,0, The loop-induced gg@ couplings [4] are mainly 
mediated by virtual top quarks, unless tan/? is very large, in which case the bottom- 
quark loops take over. The ggh and ggH couplings also receive contributions from squark 
loops, which are, however, insignificant for squark masses in excess of about 500 GeV 
[5]. In the case of the ggA coupling, such contributions do not occur at one loop because 
the A boson has no tree-level couplings to squarks. For small tan/?, the inclusive cross 
sections of pp + @ + X via gluon fusion are significantly increased, by typically 50-70% 
under LHC conditions, by including their leading QCD corrections, which involve two- 
loop contributions [6, 71. Th us, the theoretical predictions for these observables cannot yet 
be considered to be well under control, and it is desirable to compute the next-to-leading 
QCD corrections at three loops, since there is no reason to expect them to be negligible. 
Recently, a first step in this direction has been taken by considering the resummation of 
soft-gluon radiation in pp + @ + X, assuming tan/? to be small [8]. 

Considering the enormous complexity of the exact expressions for the leading QCD 
corrections [7], it becomes apparent that, with presently available technology, the next- 
to-leading corrections are only tractable in limiting cases. For instance, in the large-tan p 
limit, where the gg@ couplings are chiefly generated by bottom-quark loops, one can 
neglect the bottom-quark mass against the Higgs-boson mass, keeping the bottom Yukawa 
coupling finite. In this way, one resorts to massless &CD. On the other hand, if tanp 
is close to unity, which was assumed in Ref. [8], the top-quark loops play the dominant 
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role, and simplifications occur if the mass hierarchy Ma < 2mt is satisfied. Then, it 
is useful to construct an effective Lagrangian by integrating out the top quark. This 
effective Lagrangian is a linear combination of local composite operators of mass dimension 
four, which act in QCD with five massless quark flavours, while all dependence on mt is 
contained in their coefficient functions. Once the coefficient functions are known, it is 
sufficient to deal with massless Feynman diagrams. The effective Lagrangian describing 
the interactions of the SM Higgs boson H with gluons and light quarks was elaborated at 
two loops in Ref. [9] and extended to three loops in Refs. [lo, 111. As an application, the 
Q(a,> [g] and O(Q~) [lo] corrections to the H + gg partial decay width were calculated 
from this Lagrangian. These results can be readily adapted to the h and H bosons of the 
2HDM with small tan,0 by accordingly adjusting the top Yukawa coupling, which appears 
as an overall factor. 

In this paper, we extend the three-loop analysis of Refs. [lo, 111 to include the A boson 
of the 2HDM. As in Ref. [8], we work in the limit tan@ M 1, so that we may treat bottom as 
a massless quark flavour with vanishing Yukawa coupling, on the same footing as up, down, 
strange, and charm. Specifically, we construct a heavy-top-quark effective Lagrangian for 
the QCD interactions of the A boson and derive from it an analytic result for the O($) 
correction to the A + gg partial decay width appropriate for IV, << 2mt. We recover 
the corresponding O(LY,) result originally found in Refs. [7, 121 and also discussed in 
Ref. [13]. The O(a,) correction for arbitrary values of the A-boson and quark masses was 
presented in Ref. [7] as a two-fold parameter integral. Furthermore, it was shown that the 
leading high-rnt term of this correction may also be obtained from massless five-flavour 
QCD endowed with a heavy-top-quark effective ggA coupling [7, 141. A central ingredient 
for this check was the observation that the effective ggA coupling does not receive QCD 
corrections, at least at O(a,). This fact was interpreted [7, 141 as being a consequence 
of the Adler-Bardeen theorem [15], which states that the anomaly of the axial-vector 
current [16] is not renormalized in &CD. This theorem is strictly proven to all orders in 
(Y, for the abelian case [15], and strong arguments suggest that it also holds true for the 
nonabelian case [17]. In this paper, we verify by an explicit diagrammatic calculation 
that the O((Y,) and O(c$) corrections to the coefficient function of the operator GEVG’@‘, 
which generates the A-boson effective couplings to gluons vanish.l We also present the 
leading-order coefficient function of the physical operator pertaining to the effective qijA 
interaction, where q is a light quark. We thus provide the tools which are necessary 
to reduce the calculation of the next-to-leading QCD correction to the cross section of 
pp + A + X to a standard problem in massless five-flavour &CD. 

In our analysis, we consistently neglect the Yukawa couplings of the light quarks to 
the A boson. In other words, if all quark masses, except for mt, are nullified, the hadronic 
decay width of the A boson is entirely due to A + gg and the associated higher-order 
processes under consideration here. Through three loops, the contributing final states are 

wgg, gsqa, aad& wg, se, w, and m 
This paper is organized as follows. In Section 2, we establish the heavy-top-quark 

‘Strictly speaking, this statement is only true as long as we ignore the axial-anomaly equation, as will 
become apparent in Section 4. 
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effective Lagrangian for the QCD interactions of the A boson to three loops. In Section 3, 
we compute from this Lagrangian the O(ai) correction to the partial width of the decay 
A + gg and compare it with predictions based on various scale-optimization methods. 
Section 4 contains a discussion of our results together with some remarks on the connec- 
tion between the effective ggA coupling, the axial-anomaly equation, and the low-energy 
theorem. 

2 Effective Lagrangian 
We start by setting up the theoretical framework for our analysis. As usual, we em- 
ploy dimensional regularization in D = 4 - 2~ space-time dimensions and introduce a 
‘t Hooft mass, p, to keep the coupling constants dimensionless [18, 191. We perform the 
renormalization according to the modified [20] minimal-subtraction [21] (MS) scheme. 
For the sake of generality, we take the QCD gauge group to be SU(N,), with N, ar- 
bitrary. The adjoint representation has dimension NA = N,” - 1. The colour factors 
corresponding to the Casimir operators of the fundamental and adjoint representations 
are CF = (NC2 - 1)/(2N,) and CA = N,, respectively. For the numerical evaluation, we 
set N, = 3. The trace normalization of the fundamental representation is T = l/2. As 
an idealized situation, we consider QCD with nl = nf - 1 light quark flavours pi and one 
heavy flavour t, in the sense that 2mqi << MA << 2mt. We wish to construct an effective 
nl-flavour theory by integrating out the t quark. We mark the quantities of the effective 
theory by a prime. Bare quantities carry the superscript “0”. As already mentioned in the 
Introduction, we consider a 2HDM with tan@ = 1, so that the quark Yukawa couplings 
and masses are related by a flavour-independent proportionality factor. 

The starting point of our consideration is the bare Yukawa Lagrangian for the inter- 
actions of the A boson with the quarks in the full nf-flavour theory, 

(1) 

where v = 2-1/4GF1’2, with GF being Fermi’s constant. Taking the limit rn: + 00 and 
keeping only leading terms, Eq. (1) may b e written as a linear combination of pseudoscalar 
composite operators, d:, with mass dimension four acting in the effective nl-flavour theory. 
The resulting bare Lagrangian reads 

La = -$ (C,“d; + 6;s; + . . .) ) 

where 

(3) 



et9 are coefficient functions, which depend on the bare parameters of the full theory and 
carry all my dependence, and the ellipsis stands for terms involving unphysical operators, 
which do not contribute to physical observables. Here, Giv = 8,GE - &Cp + gsfabCGiGz 
is the colour-field-strength tensor and &pv = c~“paG~a is its dual; GE (a = 1,. . . , NA) 
are the gluon fields, g, = ~~ is the QCD gauge coupling, and fabc are the structure 
constants of the SU(N,) lg b a e ra. We do not display the colour indices of the quark fields. 
We mark the operators and coefficient functions with a tilde in order to avoid confusion 
with our previous notation for the scalar case [lo, 111. 

The Levi-Civita tensor ?+“’ is unavoidably a four-dimensional object and should be 
taken outside the R operation. Thus, we rewrite Eq. (3) as 6: = tfivpa6:,LLupo, where 
[19, 22, 231 

(4 

are antisymmetrized in their four D-dimensional Lorentz indices. Furthermore, we substi- 
tute 75 = (i/4!)~c”“p”y[,y,ypy,l in Eq. (1). We th en carry out the D-dimensional calcula- 
tions with @“pa peeled off from the expressions. In the very end, after the renormalization 
is performed and the physical limit E + 0 is taken, we contract the expressions with cpvp“ 
to obtain the final results. 

Prior to describing the actual calculation of 6’:, let us discuss how Eq. (2) is renormal- 
ized. Since we are only interested in pure QCD corrections, we may substitute A0 = A 
and v” = 2, in Eqs. (1) and (2). Denoting the renormalized counterparts of cZF and 0: by 
6;; and [d:], th e renormalized version of Eq. (2) takes the form 

&tf = -21’4Gg2A (6, [d’,] + c2 [@] + . . .) , 

where the ellipsis again represents unphysical terms. The divergence t3,JF” is renormal- 
ized multiplicatively in the same way as the colour-singlet axial-vector current J,““” itself, 
while G;La@f,aw mixes under renormalization [23, 241. Specifically, we have 

[ 1 0: = z;,d: -I- z:,d;, 

[ 1 a; = z;2T>;, 

where 2i2 = Z&Z,“’ is the product of the standard ultraviolet (UV) renormalization 
constant Z& of the singlet axial current in the MS scheme and the finite renormalization 
constant 2:‘. The latter is introduced to restore the one-loop character of the operator 
relation of the axial anomaly, 

(7) 
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-- -- -- -- $T 49 
Figure 1: Typical Feynman diagrams contributing to the coefficients c! in Eq. (2). 
Looped, bold-faced, and dashed lines represent gluons, t quarks, and A bosons, respec- 
tively. 

which is valid for Pauli-Villars regularization [23]. For the reader’s convenience, we list 
here the various renormalization constants to the order necessary for our purposes. They 
read [23] 

+ aCFTn[ t $CaTni , 

2”’ MS =z+ 1. 

Note that Zi, = (Zi)” is the square of the coupling renormalization constant, Zj. As will 
become apparent later, we only need the leading term of Zi,. The relations between the 
bare and the renormalized coefficient functions are accordingly given by 

We now turn to the computation of the bare coefficient functions 6,” and cz in Eq. (2). 
We are thus led to consider irreducible vertex diagrams which connect one A boson to the 
respective states of gluons and light-quark pairs via one or more t-quark loops, whereby 
all external particles are taken to be on their mass shells. Typical examples are depicted 
in Fig. 1. There are three independent ways to obtain c:, namely from the sets of ggA 
three-point, gggA four-point, or ggggA five-point diagrams. At the three-loop level, these 
sets contain 657, 7362, and 95004 diagrams, respectively. We choose to work out the first 
option in the covariant gauge with arbitrary gauge parameter, so that the gauge-parameter 
independence of the final result yields a nontrivial check. Another independent check is 
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then provided by elaborating the second option in the ‘t Hooft-Feynman gauge keeping 
only one external momentum different from zero. In order to cope with the enormous 
complexity of the problem at hand, we make successive use of powerful symbolic ma- 
nipulation programs. Specifically, we generate and evaluate the contributing diagrams 
with the packages QGRAF [25] and MATAD [26], which is written in FORM [27], respec- 
tively. The cancellation of the UV singularities, the gauge-parameter independence, and 
the renormalization-group (RG) invariance serve as strong checks for our calculation. 

Let us denote the sum of all relevant ggA diagrams by Vri&( ql, q2), where q1 and q2 
are the incoming four-momentaof the two on-shell gluons with polarization four-vectors E: 
and et, respectively. According to Eq. (4), Vgri& is by construction totally antisymmetric 
in the indices CL, v, p, and 0. In order to compute C,O, we need to expand I&A up to 
terms linear in q1 and 42. There is just one possible structure, namely 

(10) 
so that the coefficient Cs9~ may be conveniently extracted by noting that p:?A = -(D - 
2)( D - 3)(qi * q2)2/24. The final formula for C,O reads 

P P 

cF = -p - 2)(0 ” 3)(ql . q2)2 2:; c%~VPUh Qdy7~:&1, q2). (11) 

The normalization of Eq. (11) may be understood as follows. On the one hand, we need 
to renormalize the mass and the pseudoscalar current of the t quark in the Lagrangian (1) 
of the nf-flavour theory. In this way, the renormalization constants Z, [28], Z&, and Z5p 
[23] enter. They are defined as 

(12) 
and read [23, 281 



The finite renormalization constant Z,P is needed in addition to the usual UV renormaliza- 
tion constant of the MS scheme, Z&., to effectively restore the anticommutativity of the 
y5 matrix [23, 291. On the other hand, we need to express the bare couplings and fields 
appearing in the Lagrangian (2) of the nl-flavour theory in terms of their counterparts in 
the nf-flavour theory. The appropriate relations, 

involve the decoupling constants s,“, 520, and 5:. In the case of the ggA amplitude, only <i 
occurs. For our purposes, we need 530 through O(c2a,) and 0(eat). The corresponding 
expression may be extracted from Eq. (B.2) of Ref. [ll], w h ere the renormalized version, 
53, is listed through O(c$) in the covariant gauge. Finally, a factor of 8 stems from the 
Feynman rule for the two-gluon piece of d{. In Eq. (1 l), we may take the limit ql, q2 + 0, 
which reduces the problem of finding 6: to the solution of massive vacuum integrals [30]. 
After renormalization according to Eq. (9), we find 

Cl = - 7 
i.e. the correction terms of O(cy,) and O(ai) ’ d m ee vanish, as was suggested in Ref. [7, 141 d 
on the basis of the nonabelian variant [ 171 of the Adler-Bardeen theorem [ 151, which 
predicts that Ci does not receive QCD corrections. Notice that this is only true if Ci is 
expanded in Q!~I)(P). 

As an independent check, we may also extract 610 from the sum vgrA&(q) of the 
gggA diagrams, where Q, p, and y are the Lorentz indices of the gluon polarization four- 
vectors. Notice that it is sufficient to keep one external four-momentum, q, different from 
zero, since the three-gluon piece of 6: contains just one derivative. Again, there is only 
one possible structure linear in q, namely 

so that the coefficient CSgS~ may be easily extracted by using PigSA = (D - l)( D - 2)( D - 
3)q2/24. In contrast to the two-gluon piece of di, we now have to include decoupling 
constants for three gluon fields and one gauge coupling. Again, the Feynman rule for the 
three-gluon piece of 6: involves a factor of 8. Thus, the final formula for C,O is given by 

Taking the limit q + 0 and and working in the ‘t Hooft-Feynman gauge, we recover from 
Eq. (17) our previous result for Cf. 

Finally, we turn to Ci, which is generated by vertex diagrams that couple the A 
boson to a pair of light quarks and involve a virtual t quark. This requires at least 
two loops. Specifically, there are 2 two-loop and 63 three-loop diagrams of this type. 
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Calling the resulting q&A amplitude Vd”,: (q), where the argument q is the incoming 

four-momentum of the A boson, we may extract 6’: as * 
P P 

c = (D - l)(D T2)(D - 3)q2 2; 
-Tr [QII7vYP%~~ (Q)] * (18) 

In order to treat the A + gg decay at three loops, it is sufficient to know the leading 
term of 62. Moreover, due to Eq. (9), th e computation of the next-to-leading term 
of 62 would require the knowledge of Zi2 to o(ai), which is not yet available. After 
renormalization according to Eq. (9), we find 

(19) 
where mt(p) is the MS mass of the t quark. 

3 A + gg decay 
Having established the high-mt effective Lagrangian (5) controlling the QCD interactions 
of the A boson, we are now in a position to evaluate from it the O(c$) correction to 
the A + gg decay width. To this end, we need to compute the absorptive part of the 
A-boson self-energy, at q2 = Mi, induced by [di] and [d!J to sufficiently high order in 
the nl-flavour theory. 

In D dimensions, the correlator function, at four-momentum q, of two bare operators 
of the type defined in Eq. (4) has the Lorentz decomposition 

where II$j and II!$j are functions of q2. We may extract IIy,;j and II& by totally 
contracting Eq. (20) with the projectors 

P 
24 (q’st,“‘dg;‘s~~ - 4q[,q[p’g;‘g;‘g;;1 CL’V’P’U’ (q) = > 

l,WP,J (q2)2 (D - l)(D - 2)(0 - 3)(0 - 4) ’ 

96 
pp’v’p’u’(q) = m 

( -q2g/;‘g;‘g;‘s;;1 t Dq~pq[p’g;‘g;‘g;;‘) 
2,clVP-3 (D - l)(D - 2)(0 - 3)(0 - 4) ’ (21) 

respectively. Notice that PI and P2 develop l/c poles in the physical limit e + 0. This 
may be understood by observing that the two terms on the right-hand side of Eq. (20) are 
actually linearly dependent in four dimensions. In practice, the appearance of l/c poles 
in Eq. (21) does not create a problem, since we are only interested in the absorptive parts 
of the correlators in Eq. (20), so that it suffices to extract the pole parts of the relevant 
diagrams. It turns out that H~,;j = 0, so that, after performing renormalization, taking 
the physical limit c + 0, and contracting with the Levi-Civita tensors, we have 

([a:] [@I) = -6q2n2,;j(q2), (22) 
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Figure 2: Typical Feynman diagrams contributing to the correlator (&di). Looped, 
solid, and dashed lines represent gluons, light quarks, and A bosons, respectively. Solid 
circles represent insertions of 6:. 

where II2,;j is the renormalized version of n~,;j. In fact, it can be shown that TI~,;j van- 
ishes on kinematical grounds. As is well known, di can be written as the divergence 
of the so-called Chern-Simons current, K’*fi = &‘VpuK~pu with KLpu = 4G~~“lJ,G~*” + 
(4/3)g,o’f abcG~+G~~bG~~c, i.e. 6: = dpK’+, which is an exact identity. This implies that 
“I 0 l,WPO = %Jc,,] * Thus, the correlator in Eq. (20) is rep’resented by just one term 

proportional to qIpq[‘L’( KLpul K’+‘p’“‘I), whence it follows that n~,ij = 0. 

Due to Eq. (6), all three correlators (did{), (@da), and (@,dh) contribute to ([di][@]), 
the absorptive part of which we wish to calculate through O(ai). At the three-loop level, 
these three correlators receive contributions from 403, 28, and 33 massless diagrams, re- 
spectively. Typical examples pertaining to (@ 0:) are depicted in Fig. 2. We generate 
and evaluate the contributing diagrams with the packages QGRAF [25] and MINCER 
[31], which is written in FORM [27]. W e work in the covariant gauge with arbitrary 
gauge parameter. The cancellation of the latter in the final results serves as a welcome 
check. 

Our results for the absorptive parts of the renormalized correlators read 

Im ([ai . 
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- ln - + 121 ln2 !ft 1135 p2 

+ 48 q2 48 q2 

t CATnl 
3793 11 

-- log •t yC(2) 

( 

251 
+ T2n? -g- - 3 ![(2) + ; In $ t $ lr? 

= (q~)2g{1+af~0 [~++ln$+nl(-~-&$)] 
+(“~~(~))2[~-~C(z)-~~(3)tni(~+~~(2) 
+ :[(3)) + n; (g - $[(2)) t (T - Trill t $4) In $ 

363 11 1 
t -- -w t En: 

16 4 7 

(23) 

where c is Riemann’s zeta function, with values ((2) = 7r2/6 and c(3) M 1.202 057, and we 
have put NC = 3 in the second expression on the right-hand side. Notice that Im ([dk] [&I) 
starts at O(at). This may be understood by observing that the A + q& decay width is 
helicity suppressed and quenched if the quark qi is taken to be massless. Thus, in order 
for a diagram to contribute it must have a cut which only involves gluons. Such diagrams 
first appear at three loops. Actually, the results in Eq. (23) are not mutually independent. 
In fact, Eq. (7) 11 a ows us to derive Im([di][@]) and Im([&J[@,]) from Im([d{][@]) and 
thus provides a welcome check for Eq. (23). The O((Y,) term of Im([bi][@]) in Eq. (23) 
is in agreement with Ref. [12]. 

All ingredients which enter the calculation of the A + gg decay width through 0(at) 
are now available. From Eq. (5), we derive the general expression 

w + 57s) = z (@m ([&I [a;]) t 2CiGIm ([@I [OL]) •t C$Im ([Oil [@I)) , 

where it is understood that the correlators are to be evaluated at q2 = Mi. The last term 
contained within the parenthesis of Eq. (24) contributes in O(crf) and is only included for 
completeness. Inserting Eqs. (15) and (23) in Eq. (24) and putting NC = 3, n[ = 5, and 
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,u = MA, we finally obtain 

The O(cys) correction in Eq. (25) agrees with the result originally found in Refs. [7, 121. 
If we assume that $)(M,J) = 0.116, which follows from $1 (Mz) = 0.118 for MA = 
100 GeV, and take the t-quark pole mass to be A4t = 175.6 GeV, then the correction 
factor corresponding to the square bracket in Eq. (25) has the value ltO.68tO.23 = 1.91, 
i.e. the three-loop term amounts to 33% of the two-loop term. This is somewhat larger 
than the corresponding correction factor for a SM Higgs boson with mass MH = 100 GeV, 
which was found to be 1-t 0.66 + 0.21 = 1.87 [lo]. F or our choice of input parameters, we 
obtain from Eq. (25) the QCD -corrected prediction l?(A + gg) = 426 keV. 

Similarly to the H + gg case [lo], Eq. (25) may be RG improved by resumming the 
logarithms of the type ln(M,2/Mj). This leads to 

1800 o!j’(n/lA) a!“#) 955 c$‘(M,) 2 -- 
529 7r 7r + 1058 7r ( )I 

Since, at present, the experimental lower bound on MA in the MSSM is 24.3 GeV [32], we 
have ln(A@‘/mi) < 4, so that the numerical effect of the RG improvement is negligible in 
practical applications. 

It is interesting to compare the exact value of the O(cyz) correction in Eq. (25) with 
the estimates one may derive from the knowledge of the O(cr,) correction through the 
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application of well-known scale-optimization procedures, based on the fastest apparent 
convergence (FAC) [33], the principle of minimal sensitivity (PMS) [34], and the proposal 
by Brodsky, Lepage, and Mackenzie (BLM) [35] t o resum the leading light-quark contri- 
bution to the renormalization of the strong coupling constant. These procedures lead to 
the generic expression 

where K1 = ICI + nllcl, with ICI = 9714 and ~~ = -7/6, is the coefficient of the O(o,) 
correction in Eq. (25). The FAC, PMS, and BLM expressions for 5, Ki, and Ei2 read 

respectively, where /?s = 11/4-n//6 and ,& = 51/8 - 19nl/24 are the first two coefficients 
of the Callan-Symanzik beta function of &CD. The numerical results for nl = 5 are 
summarized in Table 1. The values of Ei2 should be compared with the true coefficient 
I<2 of the o(az) correction in Eq. (25). F or completeness, we also list in Table 1 the 
corresponding results for the H + gg decay width. In this case, one has K2 M 156.808 - 
5.708 ln(Mf/M$) [lo]. In both cases, all three scale-optimization prescriptions correctly 
predict the sign and the order of magnitude of K2. Furthermore, the three i?2 values for 
the H + gg decay width are indeed smaller than the respective values for the A 4 gg 
case. Similarly to Ref. [36], the FAC and PMS results almost coincide. 

4 Discussion and conclusions 

In this paper, we studied the interactions of a neutral CP-odd scalar boson A with gluons 
and n1 light quarks q; in the presence of a heavy quark t, with mass mt >> MA/~, through 
three loops in &CD. For simplicity, we assumed that the Yukawa couplings of the light 
quarks may be neglected, which is a useful approximation in the 2HDM with tanp x 
1, where the Yukawa couplings and the masses of the quarks are related by a flavour- 
independent proportionality factor. Starting from the Yukawa Lagrangian (1) embedded 
in full &CD, we integrated out the t quark to obtain the corresponding effective Lagrangian 
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Table 1: Numerical evaluation of Eq. (28) with nl = 5 for the A + gg and H + gg decay 
widths. 

A --) gg H + gg 
s K K2 f A-, K2 

FAC 0.091 0 277.601 0.097 0 263.346 
PMS 0.081 -0.841 278.131 0.087 -0.841 263.876 
BLM 0.174 5 252.547 0.174 4.5 242.484 

of the nl-flavour theory, the renormalized version of which is given by Eq. (5). The 
operators in Eq. (5) comprise only light fields, while all residual dependence on the t 

quark is contained in their coefficient functions. We diagrammatically evaluated the 
coefficients cr and 62 of the physical operators [@I and [bi] through O(c$) and O(aa), 
respectively. This is consistent, since [dk] is of O(o,) relative to [&I as may be seen 
from Eq. (7). W e worked in the %iS renormalization scheme [20] with the convention 
that Eq. (7) should be exact [23]. 0 ur results for cr and 62 are given in Eqs. (15) and 
(19), respectively. In particular, we found that the O(a,) and o(at) corrections to cr 
exactly vanish if the latter is expressed in terms of o, (“l)(p). We thus verified, by explicit 
calculation through three loops, the all-order prediction that cr does not receive any QCD 
corrections, which follows via a low-energy theorem [7, 141 from the nonabelian version 
[ 171 of the Adler-Bardeen non-renormalization theorem [ 151. 

At this point, we should emphasize that, due to Eq. (7), the distinction between the 
renormalized operators [di] and [d!J d oes not have a deep physical meaning. Actually, 
from Eqs. (5) and (7) it f 11 o ows that the physical coupling of the A boson to [&] is 
proportional to [(?I + CZ!““(P)%&/(~?~)]. Th us, the low-energy theorem gets violated 
starting from O(ct$) unless we stick to the MS definitions of [di] and [d!J [23]. 

The effective Lagrangian (5) allows us to evaluate physical observables related to the 
interactions of the A boson with gluons and light quarks to higher orders in QCD by just 
considering massless diagrams in the n,-flavour theory. As an application, we evaluated 
the O(c$) correction to the A + gg decay width, extending the result of Refs. [7, 121 by 
one order. Our final result is listed in Eq. (25). For MA = 100 GeV, the overall QCD 
correction factor turned out to be as large as 1 •l- 0.68 -/- 0.23 = 1.91. It is slightly larger 
than the corresponding correction factor for the H + gg decay width of the SM Higgs 
boson H with the same mass, which was found to be 1+0.66+0.21 = 1.87 [lo]. The FAC 

E331, PMS WI, and BLM [35] predictions for the O(oi) correction to the A + gg decay 
width are 0.38, 0.38, and 0.34, respectively. The corresponding results for the H + gg 
case are 0.36, 0.36, and 0.33. 
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